Elektrikli otomobil, elektrik enerjisi ile çalışan otomobillere verilen isimdir. Elektrikli otomobillerin , otomotiv endüstrisinde ileride önemli bir etkisinin olacağı düşünülmektedir. Bu türdeki arabaların yakıt tasarrfu yanında şehir kirliliğini düşüreceği ve karbon emisyonunu azaltacağı sanılmaktadır.Karbondioksit emisyonunun azalma derecesi elektrik üretimine bağlı olup %30'luk bir azalma beklenmektedir.
Elektrikli otomobil bir veya daha fazla elektrik motoru kullanarak, bataryalardan ve diğer enerji depolama cihazlarında depoladığı elektriği kullanarak sürülen otomobildir. Elektrik motorları ani tork verir, güçlü ve dengeli hızlanma sağlar.
Yerli Elektrikli Otomobilin özelliklerine ulaşmak için tıklayınız
Elektrikli otomobiller 19. yüzyılın sonlarında ve 20.yy’ın başlarında oldukça revaçtaydı, fakat içten yanmalı motor teknolojisindeki ilerlemeler ve petrol kullanan araçların ucuz olarak toplu üretimi elektrikli araçların sonunu getirdi. 1970 ve 1980’lerdeki enerji krizleri elektrikli otomobillere kısa süreli bir ilgi oluşturdu, fakat günümüzdeki gibi büyük kitlesel bir pazara ulaşılamamıştı. 2000’li yılların ortalarından beri batarya ve güç yönetimi teknolojilerindeki ilerlemeler, değişken petrol fiyatlarının sebep olduğu endişeler ve sera gazı azaltma gereksinimi elektrikli otomobilleri yeniden gündeme getirdi.

2012 Aralık itibarıyla, bazı ülkelerde bulunan seri üretim modelleri şunlardır: Tesla Roadster, REVAi, Buddy, Mitsubishi i-MiEV, Nissan Leaf, Smart ED, Wheego Whiplife, Mia Electric, BYD e6, Bollare Bluecar, Renault Fluence Z.E., Ford Focus Electric, BMW ActiveE, Coda, Tesla Model S, Honda Fit EV ve Renault Zoe’dir. 2012 Aralık’da en çok satan elektrikli araç tüm dünyada 46,000 satan Nissan Leaf’di, Mitsubishi i-MiEV tüm dünyada 18,000 adet sattı, Peugeot iOn yeni adıyla Citroen C-Zero Avrupa marketinde 6,500 adet satıldı.
Elektrikli otomobiller içten yanmalı motorlu araçlarla karşılaştırıldığında bazı avantajlara sahiptir; bunlar yerel hava kirliliğini azaltır, petrol ve petrol ithali yapılan ülkelere bağımlılığı azaltır. Ayrıca birçok gelişmekte olan ülke için ve özellikle Afrika’daki fakir ülkeler için yüksek petrol fiyatları ülkelerin ödemeler dengeleri üzerine ters bir etkiye sahiptir; onların ekonomik gelişmelerini engellemektedir.

Potansiyel faydalarına rağmen, elektrikli otomobillerin geniş ölçüde benimsenmemesinin bazı sebepleri engel ve sınırlamalar ile karşılaşmalarıdır.2010 itibarıyla elektrikli arabalar lityum-iyon bataryaların ek masrafları sebebiyle, sıradan bir içten yanmalı motorlu araca ve hibrit elektrikli araçlara göre önemli ölçüde daha pahalıdır. Bununla birlikte batarya fiyatları toplu üretim ile azalmaktadır ve daha da azalması beklenmektedir. Elektrikli arabaların yaygınlaşmasını engelleyen diğer faktörler; özel veya kamuya ait bir girişim olarak şarj istasyonlarının eksikliği ve kısıtlı menzil sebebiyle sürücülerin hedeflerine varamadan bataryalarının tükenip yolda kalacakları şeklindeki endişeleridir. Bazı hükümetler var olan engelleri aşmak için politikalar geliştirmekte, ekonomik teşvik paketleri sunmaktalar. Böylece elektrikli otomobillerin satışını artırmak için, elektrikli araç ve batarya teknolojisindeki gelişmeleri desteklemektedirler. ABD elektrikli arabalar ve bataryalar için 2.4 milyar dolarlık bir ödenek ayırdı. Çin sınırları içindeki elektrikli araba endüstrisini geliştirmek için 15 milyar dolar sağlayacağını açıkladı. Çeşitli ulusal ve yerel hükümetler vergileri azaltarak, çeşitli destekler sağlayarak elektrikli arabaların ve diğer şarj edilen hibrit araçların satın alma fiyatlarını azaltmaktadır.
Elektrikli otomobiller elektrikli araçların(EVs) bir çeşididir; elektrikli araç terimi tahrik yani ileri itiş için elektrik motoru kullanan herhangi bir aracı ifade eder, elektrikli bir otomobil ise genellikle elektrikli karayolu taşıtlarını ifade etmektedir.
Elektrikli otomobillerin güç kaynağı sadece yerleşik bir batarya olmadığı durumlarda, elektrik motorları beslendikleri diğer kaynaklara göre isimlendirilirler; güneş ışığını kaynak olarak kullanan güneş otomobilleri ve dizel jeneratörlü elektrikli otomobiller gibi, bu arabalar hibrit araçların bir türüdür. Nitekim gücü yerleşik bir bataryadan alan elektrikli otomobiller bataryalı elektrikli araçların(BEVs) bir türüdür. Genelde elektrikli otomobiller bataryalı elektrikli araçları(BEVs) belirtmektedir.
Elektrikli otomobil tarihsel gelişimi
Elektrikli otomobiller 19.yy’ın ortalarında ve 20.yy’ın başlarında oldukça popülerdi, elektrikli otomobiller konforu ve kullanım kolaylığı ile petrollü otomobillere göre daha üstündü. İçten yanmalı motor teknolojisindeki ilerlemeler, özellikle elektrik starter’i bu üstünlüğü tartışmalı hale getirdi. Petrollü otomobillerin geniş çeşitliliği, daha hızlı bir şekilde enerji yüklenebilmesi, gelişen petrol altyapısı, Ford Motor şirketi gibi şirketlerin seri petrollü araç üretimi ve bu seri üretim sonucu petrollü otomobillerin elektrikli otomobiller ile aynı fiyata gelmesine hatta daha ucuz olmasına sebep oldu. Bu gelişmeler 1930’larda elektrikli otomobillerin ABD piyasasından silinmesine sebep oldu. Bununla birlikte, son yıllarda, petrollü otomobillerin çevresel etkileri hakkındaki endişeler, yüksek benzin fiyatları, batarya teknolojisindeki gelişmeler ve petrol fiyatının yükselme ihtimali elektrikli otomobillere yeniden bir ilgi doğmasına yol açtı. 1990’lardaki başarısız bir ortaya çıkma girişiminden sonra bu yeni elektrikli otomobiller daha çevre dostu oldu ve ilk satın alma masraflarına rağmen çalıştırılması ve kullanımı daha ucuzdur.
Türkiye'de ilk elektrikli otomobil II. Abdülhamit tarafından İngiltere'de Messrs Immisch & Co şirketine 1888 yılında sipariş edildi. Şirketin mühendisleri Magnus Volk ve Moritz Immisch'in özel olarak hazırladıkları bu otomobil ön kısmında tek bir büyük teker yerine birbirine yakın iki küçük tekere sahipti, Immisch tarafından patenti alınan 20 Amper 48 Volt 1 beygirlik motoru vardı. Abdülhamit bu otomobilden çok memnun kalmıştı ve bu iki mühendisi ödüllendirmişti, bu sayede mühendisler uluslararası bir üne kavuşmuşlardı.Sultan için hazırlanan bu otomobil o zamanın teknik dergilerinde de görülebilmektedir.
İçten yanmalı motorların üstünlüğü ele geçirmesinden önce, elektrikli otomobiller birçok hız ve mesafe rekoruna sahiptiler. Bu rekorlar arasında en dikkat çekici olan Camille Jenatzy tarafından 29 Nisan 1899’da kendisine ait olan roket tipli aracı Jamais Contente ile 100 km/saat rekorunun 106 km/saat’lik bir hızla kırılmasıdır. 1920’lerden önce, elektrikli otomobiller, petrol yakıtlı otomobiller ile şehir içinde kullanım kalitesi olarak rekabet etmekteydi.
1896 yılına kadar süre gelen şarj etme altyapısındaki eksikliği aşmak için getirilen çözümlerden biri değiştirilebilir batarya hizmeti Hartfor Electric Light Company tarafından elektrikli kamyonlar için ilk defa uygulamaya konuldu. Araç sahibi aracını bataryasız olarak General Electric Şirketinden satın alıyordu ve elektriği de Hartfor Electric’ten değiştirilebilir bataryalar vasıtasıyla satın alıyordu. Araç sahibi değişken bir mil başına şarj ücreti ve kamyon depolama ve bakımını kapsayan aylık bir hizmet ücreti ödüyordu. Hizmet, 1910 ile 1924 yılları arasında 6 milyon milden fazla bir ulaşımı kullanıcılara sunmuştu. 1917’nin başlarında benzer bir hizmeti Chicago’da Milburn Light Electric otomobilleri sahipleri için bataryasız araç satın alma seçenekleri mevcuttu.
1897’de ABD’deki ilk ticari uygulama olarak elektrikli araçlar New York şehri taksi filosu olarak Filedelfiya Elektrikli taşıma ve vagon şirketi tarafından yapılmıştır. ABD’de elektrikli otomobiller 20.yy başlarında Anthony Electric, Baker, Columbia, Anderson, Fritchie, Studebaker, Riker, Milburn ve diğerleri tarafından üretilmiştir.
İçten yanmalı motorlarla karşılaştırıldığında daha yavaş olmasına rağmen, 1900’lerin başlarında bazı avantajlarından dolayı tercih edilmekteydi. Petrollü otomobillerde bulunan sarsıntı, koku ve gürültü gibi olumsuz yönler elektrikli otomobillerde yoktu. Elektrikli otomobillerin petrollü otomobillerde sürme esnasında en büyük problem olan vites değiştirme gibi bir problemi yoktu. Elektrikli otomobiller zenginlerin şehir içi ulaşımda uzun menzilin gerekmeyeceği şekilde bir kullanımda tercih edilmişti. Petrollü otomobillerin bir diğer dezavantajı ise motoru çalıştırmak için elle kurulan bir kola gereksinim duymasıydı, kolun kurulması için fiziksel olarak bir çaba harcamak gerekiyordu. Elektrikli otomobiller bu sebeplerden bayanlar için de kullanım kolaylığı sağlamaktaydı.
1911’de New York Times, elektrikli otomobilleri petrol yakıtlı otomobillerden daha temiz olması, daha sessiz olması ve daha ekonomik olması sebebiyle ideal olarak kabul etmekteydi. 2010 yılında rapor edilen bu 1911 tarihli habere, Washington Post şöyle bir yorum katmıştır; Thomas Edison’un kafasını karıştıran elektrikli otomobil bataryalarına olan benzer güven eksiklikleri günümüzde de sürmektedir.
1970’lerdeki ve 80’lerdeki enerji krizleri, hidrokarbon(petrol) enerji piyasasındaki dalgalanmalardan bağımsız olması sebebiyle elektrikli otomobillere olan ilgi tekrar yenilendi. 1990’ların başlarında, CARB(California Air Resources Board) daha yakıt verimli, daha az emisyonlu araçlara; asıl amaç olarak sıfır emisyonlu örneğin elektrikli araçlar gibi, araçlara geçişi öngören bir çalışma başlattı.Karşılık olarak, otomobil üreticileri, elektrikli modeller geliştirdiler: CryslerTEVan, Ford Ranger EV pickup truck, GM EV1 ve S10 EV pickup, Honda EV plus hatchback, Nissan lityum-iyon bataryalı Altra EV minivagon ve Toyota RAV4 EV gibi. Bu otomobiller netice olarak ABD otomobil marketinde lağvoldular, ortadan kalktılar.
2000’lerin sonlarında küresel ekonomik durgunluk otomobil üreticilerine aşırılığın sembolü olarak görülen fazla yakıt tüketen spor amaçlı taşıtları(SUVs)azaltarak, küçük arabaları, hibrit arabaları ve elektrikli arabaları yaygınlaştırma üzerine çağrıları artırdı. Kaliforniyalı otomobil üreticisi Tesla Motors 2004 yılında Tesla Roadster üzerinde geliştirmelere başladı, 2008 yılında ilk defa müşteriye sunuldu. Mart 2012 itibarıyla, Tesla en az 31 ülkede 2,250 den fazla Roadster modeli sattı..
Mitsubishi i MiEV Temmuz 2009’da Japonya’da filo müşterileri için piyasaya sürüldü, bireysel müşteriler için Nisan 2010’da satışı başladı.Hong Kong’da bireysel müşteriler için Mayıs 2010’da, Avustralya'da ise kiralama yolu ile Temmuz 2010’da piyasada yerini aldı.Nissan Leaf’in perakende satışı Japonya ve Amerika’da 2010 Aralık ayında, çeşitli Avrupa ülkeleri ve Kanada’da 2011’de başladı.
Temmuz 2012 itibarıyla, diğer elektrikli otomobiller, şehir arabaları ve bazı marketlerde bulunan hafif kamyonlar satın alma için veya kiralama için sunulmaktadır: REVAi, Buddy, Citroën C1 ev'ie, Transit Connect Electric, Mercedes-Benz Vito E-Cell, Tazzari Zero, Smart ED, Wheego Whip LiFe, Mia electric, BYD e6, Bolloré Bluecar, Ford Focus Electric, BMW ActiveE, Coda, Renault Fluence Z.E., Tesla Model S, Honda Fit EV ve çeşitli mahalli elektrikli araçlar. Ayrıca bazı öngösterim araçları deneme programlarını sürdürmektedir: Volvo C30 Electric, Toyota RAV4 EV, and Volkswagen Golf blue-e-motion.
Elektrikli otomobillerin diğer otomobiller arasındaki farklar
Elektrikli araçlar için en önemli amaç; içten yanmalı motorlu araçlardaki muadilleri ile kıyaslandığında geliştirme, üretim ve kullanım masrafları arasındaki eşitsizliği gidermektir.
Elektrikli otomobillerin satın alma fiyatları sıradan içten yanmalı motorlu otomobillerin fiyatlarından oldukça pahalıdır, hatta çeşitli ülkelerdeki elektrikli otomobil için devlet teşviklerine rağmen durum değişmemektedir. Yüksek fiyatın temel sebebi bataryalardır.Yüksek satın alma fiyatı petrollü otomobillerden elektrikli otomobillere geçişi engellemektedir. 2010’da Financial Times için Nielsen tarafından alınan bir ankete göre, Amerikan ve İngiliz otomobil müşterilerinin dörtte üçü bir elektrikli otomobil almaya istekliler fakat elektrikli otomobil için daha fazla para vermeyi reddediyorlar. Anket sonuçları gösterdi ki Amerikalıların %65’i, İngilizlerin %76’sı sıradan bir arabaya verilen bir ücretin üzerinde bir ücretle elektrikli otomobil almayı istemediği ortaya çıktı. Ayrıca 2010 tarihli J.D. Power and Associates tarafından hazırlanan raporda elektrikli otomobilin tüm kullanım süresi boyunca bataryalara ait toplam sahip olma maliyeti konusunun tamamıyla anlaşılır olmadığı belirtilmiştir, “sıradan içten yanmalı motorlarla çalıştırılan araçlarla kıyaslandığında yakıttaki masraf azalmalarını fark edebilmek için sürücünün ne kadar bir müddet bir elektrikli otomobil kullanması gerektiği hakkında hala çok karmaşa vardır. Hibrit elektrikli araçları(HEV), bataryalı elektrikli araçların(BEV) ikinci el satış fiyatları, hem de tükenmiş bataryaların değiştirilme fiyatı, tüketicilerin zihninde bulunan diğer finansal sorunlardır.”
Elektrikli otomobil şirketi Tesla Motors dizüstü batarya teknolojisini kendi otomobil bataryaları için kullanmaktadır. Bu teknoloji diğer otomobil üreticilerinin kullandığı özel bataryalardan 3 ile 4 kat daha ucuzdur. Özel bataryalar kilovat saat başına 700-800 dolar fiyatı varken dizüstü bilgisayar hücreleri 200 dolar civarındadır. Bu sayede Tesla’nın batarya teknolojisini kullanan örneğin Toyota RAV4 EV ve Smart ED ve gelecek 2014 modelleri Model X gibi elektrikli otomobil fiyatını düşünecektir. Haziran 2012 itibarıyla, Tesla Model S için önerilen üç tip batarya boyutu seçeneğine dayanarak, New York Times otomobil bataryalarının kilovat saat başına 400 dolar ile 500 dolar arasında olacağını tahmin etti.
Harvard Üniversitesi Belfor Center tarafından 2011 yılında yayınlanan bir çalışmada elde edilen bir bulgu elektrikli otomobil kullanımı ile petrol masraflarından kurtulmanın, elektrikli otomobillerin yaşamı boyunca süregelen yüksek masraflarından dolayı benzinli otomobiller ile dengelenemediğini belirtti. Sonuçlar; devlet desteği olmadığı varsayımı ile, ABD pazarı için 2010 satın alma ve kullanma masrafları ile bütün kullanım ömürleri boyunca elde edilen değerlerin karşılaştırılması ile oluşmuştur.Çalışma öngörülerine göre, bir PHEV-40 sıradan içten yanmalı motorlu araçlara göre 5,377 dolar daha pahalı iken, bataryalı elektrikli otomobil ise sıradan içten yanmalı motorlu araçlardan 4,819 dolar daha pahalıdır. Çalışma ayrıca önümüzdeki 10 ve 20 yıllar için bu karşılaştırmalı fiyat durumlarının, bataryaların ucuzlayacağı, petrolün pahalılaşacağı varsayımı ile incelenmesini de içermektedir. Gelecek senaryoları değerlendirilerek inceleme yapıldığında, çalışma bataryalı elektrikli otomobillerin sıradan arabalardan az bir miktar pahalı olduğunu(1,155-7,187 dolara kadar), bataryalı hibrit otomobillerin(PHEV) bütün karşılaştırma senaryolarında bataryalı elektrikli otomobillerden(BEV) daha pahalı olacağını ve sadece bataryaların çok ucuz, petrol fiyatlarının çok yüksek olduğu bir senaryoda sıradan arabalardan daha ucuz olabileceğini ortaya çıkarmıştır. Tasarruflar değişmektedir çünkü bataryalı elektrikli araçların yapılması basittir ve sıvı yakıt kullanmazlar, bataryalı hibrit otomobiller ise çok fazla karışık güç aktarma organına sahiptir ve hala petrolle çalışan bir motoru bulunmaktadır.
Elektrikli bir otomobilin çalışma masraflarının çoğu batarya bakımı ve olası yerleşimiyle ilgilidir çünkü elektrikli bir aracın motorunda sadece beş hareketli parça varken, benzinli bir aracın içten yanmalı motorunda yüzlerce parça bulunur.Elektrikli otomobiller değiştirilmesi gereken pahalı bataryalara sahiptirler fakat bunun dışında özellikle yaygın lityum tabanlı tasarımlarda çok düşük bakım masrafları bulunmaktadır.
Elektrikli aracın kilometre başına masrafını hesaplamak için bataryada meydana gelen yıpranmaya da parasal bir değer atanması bu yüzden gereklidir. Bu oldukça zordur çünkü batarya her şarj edilişinde kapasitesi yavaş yavaş azalacaktır; kullanıcısı bataryanın performansını yeterli bulmadığı zaman ömrünün sonuna gelmiş olacaktır. Batarya ömrünün sonuna gelmiş olsa bile tamamıyla değersiz değildir farklı bir kullanım için yeniden değerlendirilebilir, geri dönüştürülebilir veya yedek olarak kullanılabilir.
Bataryaların birçok tekil hücreden oluşmasından dolayı illa ki bütün hücrelerde eşit düzeyde bir yıpranma meydana gelmeyebilir, periyodik olarak en fazla yıpranan hücre değiştirilerek aracın menzili korunabilir.
Tesla Roadster’ın çok büyük bataryalarının sıradan bir sürüş ile yedi yıl dayanması tahmin edilmektedir ve bugün satın alındığında 12000 dolara mal olmaktadır. 40 mil(64 km)’lik günlük kullanım yedi yılda 102200 mil(164500 km) ile 1 mil(1.6 km)’de US$0.1174 batarya kullanım masrafına veya 40 mil(64 km)’de US$4.70’a denk gelmektedir. Bettter Place şirketi başka bir masraf kıyaslaması sağlamaktadır, şirket tarafından sunulması için sözleşmeden doğan mesuliyetlerin sağlanması beklenmektedir, hem de bataryaların tekrar şarj edilmesi için temiz elektrik 1 mil(1.6 km)’de 2010 yılında 0.08 dolar, 2015 yılında mil başına 0.04 dolar ve 2020 yılında 0.02 dolar olacağını belirtmektedir.40 millik bir sürüş başlangıçta 3.20 dolarken zaman içerisinde 0.80 dolara düşecektir. 2010’da ABD hükümeti 100 mil(160 km) menzile sahip bir bataryanın yaklaşık 33000 dolara mal olacağını tahmin etti. Bataryanın ömrü ve dayanıklılığı hakkındaki endişeler devam etmektedir.
Belgesel film “Who killed the electric car?” , benzinli bir araba ile EV1’ler arasında kullanımları sonucu oluşan parça değişim ihtiyaçları hakkında ustalar elektrikli arabaların her 5.000 mil(8.000 om)’de geldiğinde herhangi bir problemle karşılşamadıklarını, ön cam yıkama sıvısını doldurduklarını ve geri gönderdiklerini belirtiyorlar.
EV1’in enerji kullanımı 11kWh/100 km (0.40 MJ/km; 0.18kWh/mil) dir.US Environmental Protection Agency(ABD Çevre Koruma Ajansı)’ye göre Nissan Leaf 100 km’de 21.25 kWh 0,765 MJ/km ; 0,3420 kWh/mil) enerji kullanmaktadır.Bu farklılık değişik tasarım ve kullanım hedeflerinden ve değişken test standartlarından kaynaklanmaktadır. Araçların gerçek enerji kullanımı sürme şartları ve sürme sitili ile büyük ölçüde ilgilidir. Nissan, Leaf modelinin beş yıllık kullanım masrafının 1,800 dolar benzinli bir aracın ise 6,000 dolar olacağını tahmin etmektedir. Nissan’a göre Leaf modelinin İngiltere’deki kullanım masrafı, tepe değerinde olmayan elektrik tarifesinde(gece tarifesi) şarj edildiğinde mil başına 1,75 pens’dir. Fakat sıradan bir benzinli bir aracın mil başına masrafı 10 pens’dir. Bu tahminler ocak 2012 itibarıyla İngiliz Petrol Ekonomisi 7’nin ulusal ortalama değerleri ve gece boyunca yedi saatlik bir şarj ve gündüz vakti Tier-2 tarifesinin bir saatlik şarjı kullanıldığı varsayımlarına dayanmaktadır.
İçten yanmalı motorlu araçların çoğu sınırsız menzile sahip olduğu değerlendirmesi yapılır ve çok kısa bir sürede neredeyse çok yaygın bir şekilde bulunan benzin istasyonlarından depolarını doldururlar. Elektrikli araçlar tek şarj ile daha az bir menzile sahiptir ve şarj süresi uzun bir zaman alabilmektedir. ABD’de şoförler günlük ortalama 40 mil(64 km)’den az bir mesafe kat etmektedir böylece GM EV1 modeli ABD vatandaşlarının %90’ının sürüş ihtiyaçlarına uygundur.Bununla birlikte, insanlar hedeflerine varamadan bataryalarının biteceği endişesini yaşayabilirler.
Tesla Roadster şarj başına 245 mil(394 km) gidebilmektedir.Roadster 3,5 saat gibi bir sürede 220V, 70A ‘lik bir prizde şarj olabilmektedir. Bununla birlikte, Avrupa standartlarında 220 volt 16 amper bir prizden şarj olması 15 saatten fazla sürmektedir.
Otomobil üreticilerinin elektrikli araçların kısa menzilini uzatmak için tek bir çözümü vardır o da araçların bataryalarını değiştirilebilir şekilde yapmalarıdır. Batarya değiştirme teknolojisine sahip bir elektrikli araç 100 mil(160 km)’lik bir sürüş menzili ile batarya değiştirme istasyonuna gidebilecektir ve tükenmiş batarya tam dolu batarya ile 1 dakikada değiştirilerek elektrikli araca 100 mil(160 km)’lik bir sürüş menzili sağlayacaktır.Bu işlem benzinli araçlardaki depo doldurma işleminden daha temiz ve daha hızlıdır.Fakat yüksek yatırım maliyeti yüzünden ekonomik olarak uygulanabilir değildir.2010 sonu itibarıyla batarya değiştirme teknolojisini elektrikli araçları ile entegre etmeyi planlayan iki şirket vardır: Better Place, Tesla Motors.Better Place Japonya’da 2010 Kasım’a kadar batarya değiştirme istasyonu işletti. ve ABD, Kaliforniya’da dört adet batarya değiştirme istasyonu kurmayı planlamaktadır.
Bir diğer depolama yöntemi doğru akım hızlı şarj istasyonları, üç fazlı endüstriyel prizlerden yüksek hızlı şarj yeteneği ile tüketiciler 100 millik bataryanın %80’ini 30 dakika gibi bir sürede şarj edebilmektedir. ABD’de bütün ülkeyi kapsayan hızlı şarj altyapısı 2013'te tamamlanacaktır. 45 adet doğru akım hızlı şarj istasyonu BP ve ARCO tesislerinde kurulacak, 2011 Marta kadar hizmete açılacak.Elektrikli araç projesi on altı şehirde şarj altyapısı yerleştirecek ve altı eyaletteki büyük metropol şehirlere yerleştirilecek.Nissan Japonya’daki bayilerinden iki yüz tanesinin hızlı şarj istasyonu kuracağını duyurdu, bu hazırlık Aralık 2010’da piyasaya çıkacak olan Leaf modeli içindi ve Japonya’da her 25 milde bir hızlı şarj istasyonu kurmayı amaçlamışlardı.
Elektrikli otomobiller şehirlerde temiz havaya katkıda bulunur çünkü zararlı bir atık üretmezler; is(partiküller), uçucu organik bileşikler, hidrokarbonlar, karbon monoksit, ozon, kurşun ve çeşitli nitrojen oksitleri gibi. Temiz hava genelde yereldir çünkü bataryayı tekrar şarj etmek için kullanılan elektrik kaynağına bağlıdır, hava kirliliği emisyonları üretim santrallerinin olduğu yere kaymaktadır. Salınan karbon dioksit miktarı, aracı şarj etmek için kullanılan güç kaynağının emisyon yoğunluğuna bağlıdır, araç bazında düşünüldüğünde söz konusu aracın verimliliği ve şarj işlemi sırasında kayıp olan enerjiye bağlıdır.
Şebeke elektriği için emisyon yoğunluğu ülkeden ülkeye değişmektedir, ve bir ülke değerlendirildiğinde talebe göre, yenilenebilir enerji kaynaklarının uygunluğuna göre ve fosil yakıtların üretimde verimliliğine göre değişmektedir. Şebekeden bağımsız yenilenebilir enerji ile aracın şarj edilmesi çok düşük bir karbon yoğunluğuna sebep olmaktadır. (sadece üretim ve şebeke bağımsız üretim sistemlerinin kurulumu örneğin konutlara ait rüzgâr türbinleri)
Türkiye'de 1990-2009 Ulusal Seragazı Envanter raporunda, ulaştırma sektörü toplam karbon emsiyonunun %17'sinin kaynağıdır, ulaştırma sektörü içerisinde karayolu tipi %84.74'e denk gelmektedir. Türkiye'de satışı yapılan Renault Fluence Z.E. modelinin ortalama yakıt tüketimi 13,9kWh/100 km'dir. Türkiye'nin kaynaklara göre ortalama birim enerji emisyonu 0,53426 kgCO2/kWh ile Avrupa ortalamasının(0,8 kgCO2/kWh) altındadır.
Ricardo tarafından hazırlanan, 2011 raporunda hibrit elektrik araçlar, prize takılan hibritler ve bütün elektrikli otomobiller üretimleri esnasında mevcut sıradan otomobillerden daha fazla karbon emisyonu üretmektedirler, fakat bütün yaşam döngüleri üzerinde toplam karbon footprinti daha düşüktür. İlk yüksek karbon footprint’i batarya üretiminden kaynaklanmaktadır. Örnek olarak çalışma orta ölçekli bir elektrikli otomobilin üretim esnasında oluşan emisyonunun %43’ünün batarya üretiminden olduğunu değerlendirmiştir.
Elektrik motorları yüksek güç/ağırlık oranı sağlayabilirler ve bu motorları destekleyen yüksek akımlar sağlayan bataryalar tasarlayabilirler.
Gerçi bazı elektrikli otomobiller çok küçük motorlara sahiptirler, 15 kW(20 beygir) veya daha az ve bu yüzden mütevazı bir ivmelenmeye sahiptir, çoğu elektrikli otomobil büyük motorlara ve çevik ivmelenmeye sahiptirler. Ek olarak, diğerlerine nazaran elektrik motorunun sabit torku hatta çok düşük hızlarda bile aynı değerlendirilmiş(nominal) motor güçlü içten yanmalı motora nazaran elektrikli otomobilin ivmelenme performansı artış eğilimindedir. Diğer erken çözümlerden biri American Motors’un deneysel Amitron pickaback(piggyback) batarya sistemleri, bu batarya sistemlerinde bir kısım sürdüren(devam ettiren) hızlar için, diğer kısım ise gerektiğinde ivmelenmeyi artırmak için kullanılır.
Elektrikli otomobiller kullanılabilir güç miktarını artıran doğrudan motor tekerlek konfigürasyonu kullanılabilir. Tekerleklere doğrudan bağlı çok sayıda motor olması tekerleklerin her biri için hem tahrik hem de fren sistemlerinde kullanılmasına izin verir, dolayısıyla çekiş gücü artar. Bazı durumlarda, örneğin whispering wheel tasarımında, motor doğrudan tekerin içine yerleştirilebilir, bu sayede otomobilin ağırlık merkezi düşer ve hareketli parça sayısı azalır.Şaft, diferansiyel veya transmisyon olmadığı için elektrikli otomobiller daha az aktarım organına ve dönel eylemsizliğe sahiptir. Tekerleğin içerisinde motorun yerleştirilmesi tekerleğin yaysız ağırlığını artırabilir, bu durum aracın kontrolü üzerinde ters bir etki yaratabilir.
Otomatik veya tek vitesli tasarımlar vites değiştirme gereksinimini ortadan kaldırdı, bu sayede daha pürüzsüz ivmelenme ve fren sağlanır. Bir elektrik motorunun torkunun akımın fonksiyonu olması, dönel hızın olmaması sebebiyle içten yanmalı motorlu araçlarla karşılaştırıldığında elektrikli araçlar ivmelenme esnasında daha büyük bir hız aralığında yüksek torka sahiptir. Elektrikli bir araçta tork oluşurken herhangi bir gecikme olmaması elektrikli araç sürücülerinde yüksek bir memnuniyeti oluşturdu. Otomatik vites tasarımı en az karmaşık olandır, fakat yüksek ivmelenme motordan yüksek tork getirir, yüksek torkta yüksek akım gerektirir ve sonuç olarak joule ısınma oluşur. Bunun sebebi; motorun dâhili elektrik tesisatı dirence sahiptir, ohm yasasına göre akım geçtiği zaman ısı olarak güç harcanır. Elektrik motorlarının torku dönel hızına bağlı olmadığından, motorun çıkış gücü tork ile dönel hızın çarpılmasıdır, bu da demektir ki motor yavaş döndüğü zaman çıkış gücüyle orantılı olarak daha fazla güç harcanır. Aslında, aktarma organları araç yavaş hareket ederken daha az verimli hale gelirler.
Tek vites tasarımında, bu problem motorun tekerden daha hızlı dönmesine izin veren bir vites oranı kullanarak hafifletilir, bu işlem motorun düşük tork ve yüksek dönel hızını tekerin yüksek torku ve düşük dönel hızına çevirir, bu sayede eşit veya daha iyi ivmelenme verimlilik azaltılmadan sağlanmış olur. Bununla birlikte, motorun çalışabileceği bir tepe hızı olduğu için vites değiştirme(takas:tradeoff) aracın tepe hızını düşürür. Eğer yüksek bir tepe hızı isteniyorsa, vites değiştirme ivmelenmeyi düşürür ve düşük hızlarda verimliliği azaltır.
Çoklu hız aktarım kullanımı aracın hem yüksek hem de düşük hızlarda verimli kullanılmasına izin verir, fakat daha karmaşık ve masraflıdır.
Örneğin, Venturi Fetish Süper Araba ivmelenmesi sunarak 220 kW(295 hp)’lık göreceli tutarlılığa rağmen ve 160 km/sa (100 mph)’lik bir tepe hızına sahiptir. Bazı DC motorlu kısa mesafe yarışı için kullanılan elektrikli araçlar, basit iki hızlı manuel aktarmaya sahiptir. Tesla Roadster 2.5 Sport 0 dan 60 mil/sa(97 km/sa) hıza 215 kW(288 hp’lik) bir motor ile 3.7 saniyede ivmelenebilmektedir.
Ayrıca Wrightspeed X1 prototipi Wrightspeed Inc. Tarafından geliştirilmiştir ve dünyanın en hızlı yasal elektrikli arabasıdır.0 dan 60 mil/saniye hıza 2.9 saniyede çıkabilmektedir, dünyanın en hızlı bazı spor arabalarını geride bırakmıştır.
İçten yanmalı motorlar nispeten yerleşik yakıt enerjisini itme gücüne dönüştürürken verimsizdirler, enerjinin çoğu ısı olarak harcanmaktadır. Diğer taraftan, elektrikli motorlar depolanmış enerjiyi aracı sürme gücüne dönüştürürken çok daha verimlidir ve elektrik tahrikli araçlar hareketsizken veya kendi kendine giderken enerji harcamazlar ve kaybedilen enerjinin bir kısmı, frenin tutması sırasında bir miktar enerji kaybedilir ve yeniden üretimli frenleme sayesinde yeniden kullanılır, yeniden üretimli frenleme, frenleme esnasında kaybedilen enerjinin beşte biri kadarını tutar. Tipik olarak, sıradan benzinli motorlar aracı hareket ettirmek için veya güç aksesuarları için yakıt enerjisinin sadece %15’ini etkin bir şekilde kullanır. Dizel motorlar %20’lik bir verimliliğe sahipken, elektrik motorlu araçlar %80 civarı bir verimliliğe sahiptir.
Elektrikli arabaların üretimi ve dönüşümü tipik olarak 10 ila 23 kwh/100 km dir. Güç tüketiminin yaklaşık %20’si bataryaların şarj edilmesindeki verimsizliklerden kaynaklanmaktadır. Tesla Motors aracın verimliliği(şarj durumundaki kayıplarıda içerir) onların lityum iyonlu bataryalar 12.7 kwh/100 km(0.21 kwh/mi) ve kuyudan tekere verimlilik(elektriğin doğalgazdan üretildiği varsayımıyla) 24.4 kwh/100 km(0.39 kwh/mi).
Bataryalı elektrikli araçların güvenlik meselelerine uluslararası standart olan ISO 6469 ile değinilmektedir. Bu doküman özel meselelerle ilgilenen üç kısımdan oluşur:
• Yerleşik elektrik enerjisi depolama örneğin batarya
• Fonsiyonel güvenlik araçları ve hatalara karşı koruma
• Elektrik kazalarına karşı insanların korunması
Yangın riski fosil yakıt arabasından çok daha az: olursa bateriye üzerine çok su koyun.
ABD’de General Motors itfaiyeciler ve ilk yardımcılar için çeşitli şehirlerde eğitim programları düzenledi ve Chevrolet Volt’un aktarma organlarının ve yüksek voltaj komponentleri kontrol eden 12 volt elektrik sisteminin güvenli bir şekilde ayrılması için görev dizilerini gösterdi sonra kazazedelerin tahliyesine geçildi. Volt’un yüksek gerilim sistemi, havayastığının açılması sonucu otomatik olarak kapatılacak şekilde tasarlanmıştır ve kontrol modülünden herhangi bir iletişim kaybı tespit edildiğinde de kapanır. GM ayrıca 2011 Volt’ta acil durum müdahalecileri için acil durum müdahale rehberi hazırlamıştır. Rehber ayrıca yüksek gerilim sisteminin ayırma yöntemlerini belirtir ve “cut zone” bilgisini belirler.Nissan’da ilk yardımıclar için bir rehber yayınladı, Nissan Leaf modelinin bir kazası esnasında hasarlı bu araca müdahale prosedürlerini açıklamaktadır. Bu rehber arabanın güvenlik sisteminin yerleşik otomatik işlemlerinden ziyade manuel olarak yüksek gerilim sisteminin kapatılmasını içermektedir.Ağustos 2012 itibarıyla, ABD’de Volt, Leaf veya Tesla Roadster markalarıyla ilgili bir kaza sonrası yangına rapor edilmiş değildir.
Elektrikli aracın menzili ve dayanıklılığını artırmak için ağırlığının olabildiğince düşük tutulması yönünde büyük çabalar vardır. Bununla birlikte, ağırlık ve batarya kümeleri elektrikli araçları, benzinli araçlardan daha ağır yapmaktadır, menzili düşürmekte, fren mesafesini uzatmakta; ayrıca daha az iç hacme neden olmaktadır. Bununla birlikte, bir çarpışmada, ağır araçtaki yolcuların kaza durumu ortalama olarak daha az hasar ve daha önemsiz yaralar, hafif araçtaki yolcular ise daha ciddi hasarlar görmektedir. Bu yüzden ek ağırlık aracın performansına negatif bir etki olsa bile güvenlik açısından fayda sağlamaktadır.900 kg’lık bir aracın yaptığı kazada 1400 kg’lık aracın yaptığı kazaya oranla yolcularda ortalama %50 daha fazla sakatlık olmaktadır.Tek araçlı kazada ve iki araçlı kazalarda diğer araç için arttırılmış ağırlık hızlanmada artışa sebep olmakta ve bundan dolayı kazanın şiddetinde artış olmaktadır. Bazı elektrikli arabalar düşük sürtme kuvvetli yuvarlanma dirençli tekerlek lastiği kullanır, tipik olarak normal lastiklere göre daha az hakim olma (sıkı tutma) sağlar.Çoğu elektrikli araba küçük, hafif ve kırılgan bir gövdeye sahiptir, gerçi, bu yüzden yetersiz güvenlik koruması sunar. ABD’de Insurance Institute for Highway Safety(IIHS) kamuya açık yollarda elektrik motoru ile sürülen, yakın çevre elektrikli araçlara atıfta bulunarak, düşük hızlı araçların ve mini kamyonların kullanımını ayıplamıştır.
Düşük hızlarda elektrikli araçlar, içten yanmalı motorlu araçlarda daha az gürültüye neden olmaktadır. Görme engelli kişiler araçlardan çıkan gürültüyü sokaklarda yardımcı olarak değerlendirmektedir, bu yüzden elektrikli arabalar ve hibritler beklenmedik risklere sebep olabilmektedir.Testler gösterdi ki, bu endişe yersiz değil, araçlar elektrik modunda çalışırken 30 km/h hızın aşağısında duyulması çok zor bir ses çıkarmaktadır. Daha yüksek hızlarda, lastik sürtünmesinden ve araç tarafında hava yer değişikliği ile duyulabilir bir ses üretmektedir.
ABD Kongresi ve Japon Hükümeti hibritler ve prizli elektrikli araçların elektrik modunda çalışırken ki minumum ses seviyesini düzenleyen kanunları düzenlediler, böylece görme engelli insanlar ve diğer yayalar, bisikletliler yaklaştıklarını duyabilecekler.Nissan Leaf, Nissan’ın yayalar için araç sesi sistemini kullanan ilk elektrikli araba oldu, araba ileri giderken bir ses, geri giderken başka bir ses çıkarmaktadır.
Şimdilik bütün elektrikli araç üreticileri sürüş deneyimini sıradan otomatik transmisyonlu şoförlerin daha alışık olduğu şekilde benzetmek için en iyisini yapmaktadırlar. Modellerin çoğu bu yüzden bir PRNDL seçici, otomatik transmisyonlu arabalarda genellikle bulunur, temelindeki mekanik farklılıklarda bulunmaktadır. Basmalı butonlar, kullanım açısından en kolaydır, bütün modlar yazılım vasıtasıyla aracın kontrollerinde işletilmektedir.
Motor tekerleklere kalıcı bir şekilde bağlanmış olsa bile sabit oranlı bir vites vasıtasıyla ve park etmeme mandalı tarafından sunulan hala seçici üzerinde sağlanan P ve N modları vardır. Bu durumda, N’de motor geçersiz olur ve elektriksel olarak işletilen el freni P modunu sağlar.
Bazı arabalarda motor D’de küçük bir hareket için yavaş bir dönüş yapar, sıradan otomatiğe benzer.
Ayak ICE’nin hızlandırıcısından kaldırıldığı zaman, motor freni arabanın yavaşlamasına neden olur. Elektrikli bir araç şu koşullar altında enerjisiz ilerleyebilir, ve hafif yenileyici freni uygulamak daha alışılmış bir karşılık sağlamak yerine L modu seçilerek aralıksız yokuş aşağı sürüş için bu etki artırılabilir, düşük bir vites seçmeye benzer bir süreçtir.
Elektrikli araçlar aracın içini ısıtmak için çok az atık olarak ısı ve direnç elektrik ısısı üretirler, kullanılabilecek eğer ısı batarya şarjından/boşalmasından üretilecekse içeriyi ısıtmak için kullanılamaz. Isıtma basitçe elektrik direnç ısıtıcısı ile sağlanabilirken, yükske verimlilik ve tamamlayıcı soğutma tersine çalışan bir ısı pompasından elde edilebilir(hibrit Toyota Prius ‘larda şu anda işletilen sistemlerdir). Pozitif Sıcaklık Katsayısı(PTC) kavşak soğutma basitliği sebebiyle ilgi çekicidir- bu tür bir sistem örneğin Tesla Roadster’lerde kullanılmaktadır.
Bazı elektrikli arabalar, örneğin Citroen Berlingo Electrique, yardımcı bir ısıtma sistemi kullanır(örneğin benzinli üniteler Webasto veya Eberspacter tarafından üretilirler) fakat yeşil ve sıfır emisyon güven belgesi bu yüzden feda edilmiştir. Kabin soğutması güneş enerjisi ile artırılabilir, en basir şekilde ve etkin olarak dış havayı araç kapalı ve güneş halinde artacak aşırı ısınmayı engeller(bu tür soğutma mekanizmaları sıradan araçlar için satış sonrası kitleri olarak bulunmaktadır). 2010 Toyota Prius’un iki modeli bu özelliği bir opsiyon olarak bulundururlar.
Bütün elektrikli araç üreticileri performans enerji yoğunluğu ve akümülatör(batarya) tipine karşılık menzil için ekonomik dengenin masraf sorunlarıyla uğraşmaktadır. Çoğu otoban hızlı elektrikli araç tasarımları lityum-iyon ve lityum tabanlı başka biçimleri üzerine odaklanmıştır, alternatif batarya çeşitleride kullanılabilmektedir. Lityum tabanlı bataryalar yüksek güç ve enerji yoğunluğu sebebiyle tercih ediliyor fakat sınırlı bir raf ömrü ve yaşam döngüsü aracın kullanım masraflarını büyük ölçüde artırmaktadır. Lityum demir fosfat ve lityum titanat gibi başka biçimler geleneksel lityum iyon bataryalarla ilgili dayanaklılık(zamana karşı dayanım) meselelerini çözmeye çalışmaktadır.
Kurşun asit bataryalar, günümüzde elektrikli araçların çoğu için hala gücün en çok kullanılan formudur. ilk kurulma masrafları diğer batarya tiplerinden büyük ölçüde daha azdır, ve diğer tasarımlara göre güç çıkışının ağırlığa oranı daha düşüktür, menzil ve güç bataryaların sayısını arttırarak kolayca artırılabilir.
Nikel kadmiyum bataryalar, büyük ölçüde yerini NiMH bataryalara bırakmıştır.
Nikel demir batarya, uzun ömrü ve düşük güç yoğunluğu ile bilinir.
Bazı batarya teknolojileri de gelişme aşamasındadır:
- Çinko hava bataryaları
- Erimiş tuz bataryaları
- Çinko brom akış bataryalar veya vanadyum redoks bataryalar tekrar doldurulabilir, tekrar şarj etme yerine zamanı kurtarır. Tükenmiş elektrolit değiştirme noktasında tekrar şarj edilebilir, veya uzak bir istasyona götürülebilir.
Tekrar şarj etmeden önce seyahat menzili
Elektrikli bir arabanın menzili kullanılan bataryaların tipine ve sayısına bağlıdır. Aracın tipi ve ağırlığı ve sürücünün performans talepleri, geleneksel araçların da menzili üzerinde olduğ gibi bir etkiye sahiptir. Elektrikli araç dönüşümünde menzil batarya tipine bağlıdır.
Bataryalı elektrikli araçlardaki bataryaların periyodik olarak şarj edilmelidir(Değiştirme’yi okuyun, yukarıda). Fosil yakıtlarla enerjilenen araçlardan farklı olarak, bataryalı elektrikli araçlar gece boyunca evde şarj edilmeleri kullanışlıdır, bir dolum istasyonuna gitmek kullanışlı değildir. Sokak ya da market şarj etme istasyonu kullanılarakta şarj edilebilir. Şebekedeki elektrik çeşitli kaynaklardan üretilmektedir; örneğin kömür, hidroelektrik, nükleer ve diğerleri. Çatılarda bulunan fotovoltaik güneş panelleri, mikro hidro veya rüzgar gibi güç kaynakları da kullanılabilir ve küresel ısınma endişeleri nedeniyle desteklenebilir.
Daha çok elektrik gücü araçların şarj süresini düşürür. Güç şebeke bağlantısının kapasitesiyle sınırlıdır ve level 1, level 2 şarj etme için, arabanın yerleşik güç derecesi ile sınırlıdır. Normal bir eve ait priz (ABD, Kanada, Japonya ve diğer 110 V kullanan ülkelerde). 1.5 kW ile (230 V kullanan ülkelerde) 3 kW arasındadır. Evin bağlantılı olduğu ana hat normal ev yüklerine ek olarak belki 10,15 veya 20 kW sağlayabilir- gerçi görünür bütün kapasiteyi kullanmak mantıksız olacaktır- ve bunu kullanmak için ayrı bir hat çekilmesi gerekebilir. Yerleşik şarj ünitesine örnek olarak, Nissan Leaf çalışma esnasında 3.3 kW şarj ünitesine, ve Tesla Roadster yüksek güç duvar bağlayıcıdan 16.8 kW’a(240 V, 70A) kadar kabul edilebilir. Elektrik kaynak gücü artırılabilse bile, çoğu batarya kendi şarj değeri(”1C”) dan daha büyük bir şarjı kabul etmez çünkü yüksek şarj değeri bataryaların deşarj kapasitesi üzerinde olumsuz bir etkiye sahiptir.Bu güç sınırlamalarına rağmen, en az güce sahip sıradan bir ev prizi bile gece boyunca 15 kW/sa dan fazla bir enerji sağlar, çoğu elektrikli arabayı 70 kilometreden fazla götürmeye yeter.
Lityum titanat, LiFePO4 ve hatta bazı NiMh çeşitleri gibi bazı batarya tipleri tam kapasitelerine neredeyse 10-20 dakikada şarj edilebilir. Üç fazlı güç beslemesinden bazen elde edilen yüksek akımlarla hızlı şarj etme sağlanır. Bataryaları aşırı şarjın sebep olacağı zarardan korumak için dikkatli(hassas) şarj yönetimi gerekir. Çoğu kişiye genelde hızlı şarj etme gerekmez, çünkü 6 dan 8 saate kadar(deşarj seviyesine bağlı olarak) iş günü veya gece boyunca evde şarj etmeye yeterli zamana sahiptirler. Bataryalı Elektrikli Araç sürücüleri sıklıkla evde şarj etmeyi tercih ederleri kamuya açık bir şarj istasyonuna gitmenin zorluğundan sakınırlar. Avrupa’da elektrik beslemesi 240 V’tur, evdeki akım ise genelde 13 A’dir. Bu da demektir ki, güç elektirkli araçlara 3.1 kW civarında ve 8 saatte tamamen şarj olabilmektedir.